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� http://leonardo.phys.washington.edu/~ravel/software/exafs/



Artemis

Variables

Fit: optimize variables

Menus:
Project Name:  

Data display 
area:
Changes depending 
on selected 
information from 
Data and Paths list

Data and Paths:
Changes data display area

Plotting
parameters

Echo Area:  
Messages from 
Artemis

Data: input from Athena

Vari
ables

Theo
ry Artemis

�File: open data file: F:\Ifeffit\examples\Artemis\Cu\cu010k.chi



Reading in Data 

Title lines 
from data file

data file name

Fourier 
transform

parameters

Message from Artemis

Data plotted in R-space

Athena

�File: import atoms input file: F:\Ifeffit\examples\Artemis\Cu\atoms.inp



Atoms page

Title lines

Structural
Information

Always much larger
than paths used in fit

Make input (feff.inp) for
theoretical calculation 

(FEFF)

Message from Artemis

Absorption
edge

Atom with 
a core hole

Crystal structures
(Atoms)1

�Click “Run Atoms”



Theory input page (feff.inp)

absorption
lengths

normalization correction
title lines 

hole number

max path length

potential list

Crystal structures
(Atoms)1

�Scroll feff.inp page downward



Theory input page (feff.inp)

Potential list

Atoms list
Atoms generates a list of atoms for 

Feff, hence the name Atoms.

Run Feff

Crystal structures
(Atoms)1

�Click on Run Feff button



Running Feff
Text messages during Feff calculation

Theoretical Models
(FEFF)2

� Artemis Palettes
� Ifeffit:  Shows the interface from Artemis to Ifeffit.  Artemis is just a nice interface to Ifeffit.  

Ifeffit does the work!
� Results:  Shows the results page from a fit of the theory to the data.
� Files:  Shows data files.
� Messages:  Shows output from Feff.
� Echo:  Shows entire message from Artemis Echo area
� Journal:  Useful place to make notes.
� Properties:  Notes about the current project file.



Feff paths:  feffxxxx.dat

Feff paths

Theoretical Models
(FEFF)2

� Degen:  Degeneracy of the 
path (number of identical atoms 
for single scattering path)

� reff: Inital half path length (bond 
length for single scattering path) 

� amp:  Estimate of amplitude of 
path relative to first path.

� fs:  Number of forward 
scattering events.

� scattering path:  atoms 
scattering photoelectron, [+] 
symbol represents core atom.

�Click on feff0001.dat in the Data & Paths list

� S I Zabinsky, J J Rehr, A Ankudinov, R C 
Albers and M J Eller. "Multiple-scattering 
calculations of X-ray-absorption spectra." Phys. 
Rev. B 52(4): pp 2995-3009, 1995.



Path Description

Feff calculation

use or not?

Path description

parameters

Model theory to data
(IFEFFIT)3



The EXAFS Equation

(NiS02)Fi(k) sin(2kRi + ϕi(k)) exp(-2σσσσi2k2) exp(-2Ri/λ(k))
kRi

2χi(k) = ( )
Ri = R0 + ∆∆∆∆R

k2 = 2 me(E-E0)/ ħ

Theoretically calculated values
Fi(k) effective scattering amplitude
ϕi(k) effective scattering phase shift
λ(k)  mean free path
R0 initial path length

Parameters often determined 
from a fit to data
Ni degeneracy of path
S02 passive electron reduction factor
E0 energy shift
∆∆∆∆R change in half-path length 
σσσσi2 mean squared displacement

χ(k) = Σi χi(k) 
with each path written as:

R0

Photoelectron

Scattered
Photoelectron

Model theory to data
(IFEFFIT)3

Feff calculates the theoretical scattering 
amplitude F(k) effective, hence the name Feff.

� E. A. Stern and S M Heald Basic principles and applications of 
EXAFS. Handbook of Synchrotron Radiaction. E. E. Koch. 
New York, North-Holland. 10: pp 995-1014, 1983. 

� E. A. Stern. "Theory of the extended x-ray-absorption fine 
structure." Phys Rev B 10(8): pp 3027-3037, Oct 1974.

� E A Stern. "Structural determination by X-ray Absorption." 
Contemp. Phys 19(4): pp 239-310, 1978.



Path Parameters

Parameters often determined 
from a fit to data

N degeneracy of path

S02 passive electron reduction factor

E0 energy shift

delR change in half-path length

sigma^2 mean squared displacement

� To produce a theoretical 
model each path must 
have a value for each of 
these parameters.

� Artemis makes a guess for 
these expressions.

� These values can 
originate from numbers or 
math expressions.

Model theory to data
(IFEFFIT)3

�Click “Guess, Def, Set” in the Data & Paths list



EXAFS parameters

� Define:  Define parameter 
to value given.

� New: Make a new 
parameter.

� Grab:  Set the value to the 
best-fit value from the fit.

� Discard: remove 
parameter.

� Hide:  Hide editing area

� Guess:  Optimize parameter in fit.

� Def:  Define a parameter to a given 
value but re-evaluate it during the fit

� Set:  Set a value to a given value.  
Determine value once.

� Skip:  Do not use this parameter.

� Restrain: penalty that can be 
added to the fit. Name of parameters 

that YOU have created 
to define the required 
values for each path

�Click “Fit” to optimize these values

Structural Parameters
4



Fit Results Structural Parameters
4

Your parameters
Initial guessed value

�Scroll down



Fit Results

The value used for 
each EXAFS 
parameter for each 
path included in the fit.

Structural Parameters
4
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Theoretical Models
(FEFF)

Example 1:  Aligning data and theory



SnO2 first background removal from 
Athena

� E0 is somewhere on the edge
� Using default parameters
M Newville, B Ravel, D Haskel and E A Stern. "Analysis of multiple 

scattering XAFS data using theoretical standards." Physica B 208 & 
209: pp 154-156, 1995.



Fit of first Shell

� E0 could be smaller 
� Background needs to be adjusted
� More information: M Newville, B Ravel, D Haskel and E A 

Stern. "Analysis of multiple scattering XAFS data using theoretical 
standards." Physica B 208 & 209: pp 154-156, 1995.



Create first shell model with E0=0

� Set parameters to their best-fit values by using the Grab button.
� Change all parameters from guess to set.
� Set E0=0.
� Run the “Fit” again to produce the theory with zero for E0.

Data and theory are not aligned



� Read the theory into Athena
� Select your data and use the theory as a standard
� Adjust E0 so that the data and theory are aligned at low k values

E0

Data and Theory Aligned

data

theory

Background corrected and energy aligned 
by using theory



Fit to first shell with background adjusted

� Read the chi(k) data back into Artemis and fit the first shell



Example 2:  Modeling a metal-oxide (SnO2)

Absorption data Crystal structures
(Atoms)

Theoretical Models
(FEFF)

Background subtracted 
EXAFS data (IFEFFIT) Model theory to data

(IFEFFIT)

Structural Parameters

Athena Artemis

1

2

3
4



Example 3:  Modeling a metal-oxide (SnO2)
� Compare the sum of all 69 paths to the data



How many paths are required?

Minimum amplitude 10%
18 of 69 paths

Minimum amplitude 5%
30 of 69 paths

Minimum amplitude 15%
8 of 69 paths

All data is present in model missing a little of the data missing a lot of the data



Models to consider:
� ∆r:

� Symmetric expansion term: Alpha * reff.
� Grouped depending on distance and atom types
� Related to unit cell dimensions

� ∆E:
� Energy shifts that depend on atom type
� One energy shift for all paths
� Two energy shifts, one for first shell and another for all other shells

� σ2:
� Grouped depending on distance and atom types.
� Use a Debye or Einstien model, with one or more characteristic 

temperatures.
� Each shell with independent value.
� Separate structural disorder from thermal disorder components.

� S02:
� One S02 for all paths.
� Approximate S02 from standards.

� N:
� Determined by the crystal structure.
� Fit a data series were N is expected to change.



Some EXAFS references
� Multiple edges, structural information:  B Ravel, E. Cockayne, M. Newville and K. M. Rabe. "Combined EXAFS and first-principles 

theory study of Pb1-xGexTe." Phys. Rev. B 60(21): pp 14632–14642, Dec 1999 
� Structural information, bond angles:  A. I. Frenkel, E A Stern, A. Voronel, M. Qian and M Newville. "Solving the structure of disordered 

mixed salts." Phys. Rev. B 49(17 – 1): pp 11662–11674, May 1994.
� Model two phases, then combined to model a mixture:  S. Kelly, R. Ingalls, F. Wang, B. Ravel and D. Haskel. "X-ray-absorption fine-

structure study of the B1-to-B2 phase transition in RbCl.“ Phys. Rev. B 57(13): pp 7543–7550, April 1998 
� Determine neighbor atom types and number using standards:  S. D.  Kelly, K. M.  Kemner, J. B.  Fein, D. A.  Fowle, M. I.  Boyanov, 

B. A.  Bunker and N. Yee. "X-ray absorption fine-structure determination of pH dependent U-bacterial cell wall interactions." Geochem. 
Cosmo. acta. 66(22): pp 3855-3871, Nov 2002.

� Multiple techniques: P G Allen, J J Bucher, D L Clark, N M Edelstein, S A Ekberg, J W Gohdes, E A Hudson, N Kaltsoyannis, W W 
Lukens, M P Neu, P D Palmer, T Reich, D K Shuh, C D Tait and B D Zwick. "Multinuclear NMR, Raman, EXAFS, and X-ray diffraction 
studies of uranyl carbonate complexes in near-neutral aqueous solution.  X-ray structure of [C(NH2)3]6[(UO2)3(CO3)6] 6.5H20." Inorg. 
Chem. 34: pp 4797-4807, 1995.

� Pressure dependent data:  A. I. Frenkel, F. M. Wang, S. Kelly, R. Ingalls, D. Haskel, E. A. Stern and Y. Yacoby, “Local structural 
changes in KNbO3 under high pressure”, Physical Review B 56, 10869, 1997. 

� Temperature dependent data:  D. Haskel, E.A. Stern, D.G. Hinks, A.W. Mitchell, J.D. Jorgensen, J.I. Budnick, “Dopant and Temperature 
Induced Structural Phase Transitions in La2-xSrxCuO4”  Physical Review Letters, 76 (3) pg 439

� Multiple edges, structural disorder: S. Calvin, E. E. Carpenter, B. Ravel, V. G. Harris and S. A. Morrison. "Multiedge refinement of 
extended x-ray-absorption fine structure of manganese zinc ferrite nanoparticles." Phys. Rev. B 66: pp 224405, 2002. 

� Structural information from XANES and EXAFS:  B. Ravel, E. A. Stern, R. I. Vedrinskii and V. Kraizman. "Local structure and the 
phase transitions of BaTiO3." FERROELECTRICS 206(1-4): pp 407-430, 1998. 

� Temperature dependence and nanoparticles:  A. I. Frenkel, C. W. Hills and R. G. Nuzzo. "A view from the inside: Complexity in the 
atomic scale ordering of supported metal nanoparticles." JOURNAL OF PHYSICAL CHEMISTRY B 105(51): pp 12689-12703, 2001.



The Model for SnO2 data

� ∆r: symmetric expansion term: Alpha * reff.
� ∆E: Energy shifts that depend on atom type:

� The first shell; Eo1, 
� All other oxygen scattering events: Eo2
� All tin scattering events: Esn

� σ2: Grouped depending on distance and atom 
types.

� S02: one for all paths.
� N: determined from the crystal structure.



Final Model for SnO2
Path N reff ∆R σ2 ∆E 

Sn-O1  4 2.0519 Alpha·reff σσσσ2o1 ∆∆∆∆Eo1 
Sn-O2  2 2.0567 Alpha·reff σ2o1 ∆Eo1 
Sn-Sn1 2 3.1864 Alpha·reff σσσσ2sn1 ∆∆∆∆Esn 
Sn-O3 4 3.5906 Alpha·reff σσσσ2o3 ∆∆∆∆Eo2 
Sn-Sn2 8 3.7093 Alpha·reff σσσσ2sn2 ∆Esn 

Sn-Sn2-01 8 3.9090 Alpha·reff σσσσ2sn2o1 0.5·∆Esn+0.5·∆Eo1 
Sn-Sn2-02 8 3.9090 Alpha·reff σ2sn2o1 0.5·∆Esn+0.5·∆Eo1 

Sn-O5 8 4.2414 Alpha·reff σσσσ2o5 ∆Eo2 
Sn-Sn3 4 4.7373 Alpha·reff σσσσ2sn3 ∆Esn 
Sn-O7 8 4.8006 Alpha·reff σσσσ2o7 ∆Eo2 
Sn-Sn4 8 5.7092 Alpha·reff σσσσ2sn4 ∆Esn 
Sn-Sn5 8 5.8365 Alpha·reff σ2sn4 ∆Esn 

Sn-Sn5-01 8 5.8405 Alpha·reff σ2sn4 0.5·∆Esn+0.5·∆Eo1 
Sn-Sn5-04 8 5.8405 Alpha·reff σ2sn4 0.5·∆Esn+0.5·∆Eo2 

Sn-O1-Sn5-O1 4 5.8444 Alpha·reff σ2sn4 0.33·∆Esn+0.66·∆Eo1 
Sn-O4-Sn5-O4 4 5.8444 Alpha·reff σ2sn4 0.33·∆Esn+0.66·∆Eo2 

Sn-Sn6-Sn1 4 6.3728 Alpha·reff σσσσ2sn6 ∆Esn 
Sn-Sn1-Sn6-Sn1 2 6.3728 Alpha·reff σ2sn6 ∆Esn 

Sn-Sn7 4 6.6995 Alpha·reff σσσσ2sn7 ∆Esn 
Sn-Sn7-O2 4 6.6995 Alpha·reff σ2sn7 0.5·∆Esn+0.5·∆Eo1 
Sn-Sn7-O6 4 6.6995 Alpha·reff σ2sn7 0.5·∆Esn+0.5·∆Eo2 

Sn-Sn7-O6-O2 4 6.6995 Alpha·reff σ2sn7 0.33·∆Esn+0.33·∆Eo1+0.33·∆Eo2 
Sn-O6-Sn7-O2 4 6.6995 Alpha·reff σ2sn7 0.33·∆Esn+0.33·∆Eo1+0.33·∆Eo2 
Sn-O2-Sn7-O6-

O2 
4 

6.6995
Alpha·reff σ2sn7 0.25·∆Esn+0.50·∆Eo1+0.25·∆Eo2 

Sn-O6-Sn7-O6-
O2 

4 
6.6995

Alpha·reff σ2sn7 0.25·∆Esn+0.25·∆Eo1+0.50·∆Eo2 

Sn-Sn8 8 7.4187 Alpha·reff σσσσ2sn8 ∆Esn 
Sn-Sn8-Sn2 16 7.4187 Alpha·reff σ2sn8 ∆Esn 

Sn-Sn2-Sn-Sn2 8 7.4187 Alpha·reff 4·σ2sn2 ∆Esn 
Sn-Sn2-Sn8-Sn2 8 7.4187 Alpha·reff σ2sn8 ∆Esn 

Sn-Sn9 16 7.6578 Alpha·reff σσσσ2sn9 ∆Esn 
 

Includes all the
atoms shown here

� One S02-value was also determined in the fit.
� 30 paths used in final model.
� There are a total of 18 parameters in this model and 56 independent points in the 

data.



Final Model and Fit to SnO2
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Evaluating fit Results
Typical values for EXAFS parameters
� ∆r:  less than 0.5 Å
� ∆E: less than 10 eV
� σ2:  0.003 to 0.020 Å2

� S02: 0.70 to 1.10



Example 3:  Determining 2nd shell atom 
type and number
� Uranyl in equilibrium with a mixture of Fe-oxides and 

different microbial components.
� Possible second shell atoms, O, C, P, Fe, U.
� 30-50 combinations of these atoms were tested. 
� Three of these tests are shown here:

� C and Fe, 
� P and Fe, 
� Fe and Fe 

Oax

Oax

Oeq

Oeq Oeq
Oeq

U



� Place C and Fe shells in a 
“good” spot
� set parameters – no 

fitting
� monitor results and fit 

spectra

Test data for C and Fe shells
data

fit
C
Fe



Fit Results using C and Fe shells

data
fit
C
Fe

-∆E-value

EXAFS Parameters

-Coordination
numbers

+Distances

-σ2-values



� Place P and Fe shells in a 
“good” spot
� set parameters – no 

fitting
� monitor results and fit 

spectra

Test data for P and Fe shells

data
fit
P
Fe



Fit Results using P and Fe shells

data
fit
P
Fe

+∆E-value

EXAFS Parameters

+Coordination
numbers

+Distances

-σ2-values



Test data for Fe and Fe shells

� Place Fe and Fe shells in 
a “good” spot
� set parameters – no 

fitting
� monitor results and fit 

spectra

data
fit
Fe
Fe



Fit Results using Fe and Fe shells

+∆E-value

EXAFS Parameters

+Coordination
numbers

+Distances

+σ2-values
data

fit
Fe
Fe



Multiple data set fit

� Fit 4 data sets
� Use K-weights of 1, 2 and 3
� Fit different N values for 

each data set
� Data series is needed to 

accurately determine the 
number of Fe atoms in the 
2nd and 3rd shells



Modeling a Data Series

� Coordination number is determined within 5%
� Assuming model is accurate!



Fit results from data series

Fe1M1 Fe1M2

Fe1M3 Fe2M1
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